Inequality in triangle involving medians
https://www.linkedin.com/groups/8313943/8313943-6369046791299624961

Let mg,mp, me be lengths of the medians of a triangle ABC.Prove that
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Solution by Arkady Alt San Jose, California, USA.

Let hg, hy, he be lenghts of helghs of a triangle ABC and F be it’s area
Since my > hy,xh, = F,z € {a,b,¢} and F = sr,where s is semiperimeter,
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prove inequality

(1) mg+mp+me<4R+r.
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Noting that (m, + my, + mc)2 = 1
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and a? + b% + ¢2 :2(82—r2 —4Rr),ab+bc+ca252+4Rr+r2,
52 < 4R? + 4Rr + 3r*(Gerretsen’s Inequality) and R > 2r we obtain
(ma+mb+mc)2§7(a2—|—b2—|—62)+2(ab—|—bc+ca) 7-2(s*—r? —4Rr) + (82+4RT+T2):
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(4R+71)> —4r (R—2r) < (4R +1)%.
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